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In this paper we develop a size-consistent energy functional for a manifold 
of open-shell states using a specific form of the duster  expansion representa- 
tion of the wave-function. Starting with a set of determinants {~a} spanning 
a "full valence" manifold of a model space the cluster operator generates a 
set of correlated exact functions. The expectation value for energy for each 
such function consists of a numerator and a denominator. By using two 
different kinds of  cluster operators, one set, T~, including excitations out of  
the model space and the other, X, including transitions within the model 
space, the cancellation of the denominator leading to a size-consistent energy 
functional is proved. It is also shown that if the cluster operator exp (S(")) 
for an n-valence problem is built up hierarchically from the zero-valence core 
problem, where S(") consists of m < n cluster amplitudes frozen at their 
m-valence problem values and an additional set S (") introduced at the n- 
valence level, the shift in energy upon addition of extra valence holes/particles 
can be calculated in a transparent manner. This build-up procedure, to be 
called "Subsystem Embedding Condit ion" (SEC) by us, allows calculation 
of difference energies as well. For calculating the cluster-amplitudes, and the 
combining coefficients for {dPa} we invoke Euler's variational principle for 
the energy-functional. First, the size-consistent expressions obtained from 
H(") = (X(A")IHIx(A"))I(X(A")[X(A ")) where [X(A ")) = exp S<")[(I)~ )} for the n-valence AA 
problem, are each varied with respect to the cluster-amplitudes S ("). The 
amplitudes are thus optimal for the functions {XA}. Next, the combining 
coefficients for qb(A") are determined by varying the size-consistent energy 
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expression for each function ~ )  = ~,A CAKX(A n) with respect to the combining 
coefficients. The resulting equation is analogous to a secular equation of a 
CI problem with a hermitian effective Hamiltonian H replacing H and having 
the dimension of the model space. The eigenvalues E~  ) are the correlated 
energies for the functions. As the operators To and X are not all independent 
- being related by the conditions guaranteeing cancellation of the 
denominator - the variation of the quantities I~IAA with respect to the cluster 
amplitudes have to be done using Lagrange's method of undetermined multi- 
pliers. The working of the theory has been illustrated explicitly deriving the. 
equations for such difference energies as IP or EA for a closed shell system. 

K e y  words:  Open shell many body theory--size consistency--coupled cluster 
theory 

1. I n t r o d u c t i o n  

The development of theories for electron correlation and accurate difference 
energies of chemical interest including correlation has always been a major goal 
of quantum chemists. Several highly successful formulations of the correlation 
energy for the closed-shell problem have emerged over the past two decades. 
Sinanoglu's many theory (MET) [1] and the consequent development leading to 
coupled-cluster method (CCM) [2-4] remain a fundamental step in this direction. 
Subsequently, there have been attempts to generalize the cluster expansion 
techniques to open-shell systems. Silverstone and Sinanoglu generalized the 
closed-shell MET to open shell systems [7] and the open shell analogues of the 
coupled-cluster method were developed by Mukherjee et al. [8, 9], Offerman, Ey 
and Kummel [10], Lindgren [11], Jeziorski and Monkhorst [12] and others [13-18]. 

The important structural difference of this development vis-a-vis the linear vari- 
ation method of CI stems from the cluster representation of the wave function 
which ensures the separability criterion for many electron systems [5] and the 
concomitant property of size-consistency [6]. 

Recently we introduced a variation-based size-consistent theory for the closed- 
shells [19], where the closed-shells wave-function was taken to be of coupled- 
cluster form. The expectation value for the energy becomes size-consistent when 
the norm of the function appearing in the denominator- of the expectation value 
is cancelled with the disconnected terms factoring out of the numerator. The 
cluster components were determined by invoking an Euler Variational principle 
for the full (or truncated) size-consistent energy functional - similar in spirit to 
the "Varied Portion Approach" (VPA) of Sinanoglu [1]. In the present paper we 
want to pursue the same idea in an attempt to incorporate the treatment of the 
open-shell states. We shall thus start with expectation-value like quantities for 
the energies of a manifold of open-shell states using a cluster expansion of the 
wave-function akin to the Silverstone-Sinanoglu approach [7], and prove that it 
is possible to cancel the norm in the denominator with the disconnected terms 
factored out from the numerator exactly as in the closed-shell situation. 
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The development of a size-consistent energy functional and a consequent Euler 
variation method for the determination of a manifold of  energy levels has not 
been systematically pursued so far. Only Reitz and Kutzelnigg [13] used a common 
unitary ansatz description for both a parent closed and the derived open shell 
states and developed a size-consistent theory for the respective energies. The 
unitarity of the cluster operator rendered a multicommutator structure of the 
numerator through Hausdorff formula guaranteeing size-consistency [4, 38], and 
the denominator was identically taken to be unity. This has since been generalized 
by Kutzelnigg and coworkers [36]. As we shall discuss in Sect. 5, the unitary 
cluster operator tends to proliferate the number of terms involved in the energy 
calculation (see also, Ref. [39]). A nonunitary cluster operator, suitably chosen, 
would eliminate most of them. The norm cancellation is then not automatic, 
however, and suitable manipulations are called for. Basically, what we shall do 
is to introduce two sets of cluster operators in the wave-operator W for the open 
shell states. If  the starting functions are said to span a model space, the one set 
of cluster amplitude excites to "virtual states" orthogonal to those in the model 
space. The other, auxiliary set "scatters" only between the model space states. 
The role of  the auxiliary set is to force W to behave as a norm-conserving operator 
in the model space: [ W + W]MS = 1 MS, where [ ]MS stands for the projection on 
to the model space. This is the principal point of our departure from the closed 
shell development. 

2. The theory 

2.1. Pre l iminary  considerat ions  

In our variational development for the open-shell states, we shall follow closely 
the general idea of  quasidegenerate MBPT [29, 36, 38]: viz, an effective Hamil- 
tonian will be constructed first by means of a wave-operator that applies to all 
the matrix-elements of this effective Hamiltonian. The energies are obtained by 
diagonalizing this effective Hamiltonian over suitable model space functions at 
the end (see e.g. Ref. [36] for an extensive discussion on this point). Clearly, 
such an approach demands that we treat the various N-electron sectors of the 
Hilbert space on the same footing. This is implicit and automatic in the 
quasidegenerate MBPT [29], but requires a careful and explicit consideration for 
nonperturbative methods, as has been done, for example, in the nonvariational 
works of  Mukherjee et al. [9], Ey et al. [ 10] and Kutzelnigg [36]. For the variational 
treatment to be envisaged by us, a similar development is warranted. 

We adopt a hole-particle representation of the functions entering our theory. A 
closed-shell "core"  function defines the "hole"  and "particle" orbitals of the 
problem. The open-shell reference functions spanning the "model  space" are 
built up by the action of products of appropriate hole and /o r  particle operators 
on the core function. The orbital labels on these operators are taken as valence 
(hole valence or particle valence). The number n of these valence occupancy 
signifies that we are dealing with an n-valence problem. Given an n, and the 
total number of electrons N, the type of n-valence determinants spanning the 
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model space is unique and may be obtained by assigning unit occupancies to a 
set of  n-valence orbitals (valence holes and /o r  valence particles) chosen from 
among all the valence orbital labels in all possible manner. The model space for 
a specific n-valence problem thus spans a "full valence" space. In the hole-particle 
formulation, existence of  a unique effective Hamiltonian furnishing energies for 
the various N-electron sectors implies that we have a unique transformation 
procedure for the Hamiltonian such that the various n-valence sectors are treated 
on the same footing. If  we confine ourselves to a particular n-valence sector, 
then the various cluster amplitudes become linearly dependent, as has been noted 
by several workers before [9, 12, 20, 36]. This redundancy problem is a feature 
quite special to t h e  open-shell situation. 

To avoid the redundancy problem, we clearly need to postulate the existence of 
a unique wave-operator W for all the nh hole-np particle sectors of the Hilbert 
space. There are two possible ways to achieve this, and both have been tried. 
One way is to postulate that same cluster amplitudes entering the cluster expansion 
of W apply to all the n-valence sectors of the Hilbert space. This couples the 
various n-valence sectors of the Hilbert space and one has to solve for the cluster 
amplitudes simultaneously for the coupled problems [9, 20, 36]. The other is to 
postulate an ansatz for the wave-operator as an exponential operator written in 
normal order with respect to the core-function as the vacuum [11]. In that case 
there is a decoupling of the various n-valence sectors of the Hilbert space [11, 
20, 35, 40] 1 . We shall follow the second strategy in our development. We shall, 
however, construct the wave-operator in a hierarchical manner, taking advantage 
of the fact that only the n-valence projection of the wave-operator is active in a 
particular n-valence problem. 

Let us assume that W can be written in the form 

W =  N[exp (S)] (1) 

where N[  ] signifies the normal ordering with respect to the core-function as the 
vacuum. The cluster amplitudes appearing in S can all be classified depending 
on the number of  valence destruction operators they contain. Thus, we may 
denote operators in S having n valence-destruction operators as S (n). The simplify- 
ing role of the normal ordering in Eq. (1) is now evident: for an n-valence 
problem, only those components S (") of S can give non-vanishing contribution 
upon acting on the n-valence model space functions that satisfy m-< n; the 
m > nS (''~ operators will give identically zero by acting on the model space 
functions. Defining operators S~") and W (n) as 

S~"~= ~ S (m) (2a) 
m=O 

W (n~= g [ e x p  (~(n~)] (2b) 

1 In case there are valence holes in the problem, the effective Hamiltonian can couple various 
n-valence sectors because it conserves number of electrons and no t  holes or particles separately. For 
an n~ valence problem with n h valence holes, all the lower valence sectors differing by h-p, 2 h - 2 p . . .  etc 
are coupled. But the basic physics we are going to describe is not altered by this complication 
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we have 

W P  (")= W(" )P  (") ' (3) 

where P( ' )  is the projector onto the n-valence model space. W (") is thus the 
active component of W for the n-valence problem. The norm-preservation condi- 
tion within the model space also becomes 

P(") W t W P  (") = P(") W *(') W( ' )  P ('). (4) 

We now describe the hierarchical build-up of  W successively through various 
W (m), m ~ 0 . . .  n, following our earlier developments of nonperturbative open- 
shell coupled cluster theory [9, 20, 35, 40]. This build-up has been termed "The 
Subsystem Embedding Condition" (SEC) by us. SEC gives a practical and unique 
procedure for generating higher rank matrix-elements of the effective Hamiltonian 
as one goes to states having increasing number of valence occupancies. As we 
shall also see, SEC is very useful for ensuring easy and transparent cancellation 
of common terms for difference energy calculations. 

We start with the zero-valence core problem first, and build up hierarchically, 
finally stopping at the desired n-valence level, say. At the zero-valence core level, 
the cluster operators 7 (0) = S (~ induce hole to particle excitations only, as in the 
closed-shell couple d cluster theory [2] and may be denoted by To. The associated 
cluster amplitudes can be obtained by variationally solving the closed-shell 
variational equations derived by us [19]. The one-valence problem is solved next. 
The operator ~(1) may be written as 

g(l) = 7(0) + S(1) 
(5a) 

= Tc + 8 (1) 

where S (1) contain two distinct kinds of operators. Calling the operators inducing 
excitations from the one-valence model space to virtual space a s  T (1), and those 
inducing model space to model space "scatterings" as X (I), we may write 

8 (1) = T(~ t)+ X (1). (5b) 

The major dynamical role of T(, ~) is to introduce relaxation and correlation effects 
through (core-valence) -) (particle, valence) excitations and it must involve apart 
from core excitation, one valence destruction operator, Suitable size-consistent 
energy functional will be constructed from W (1), defined through (2) and (3), 
and the amplitudes for T(~ L) and X (~) will be obtained from variational equations 
corresponding to the stationarity of the energy functional and the norm preserva- 
tion condition (Eq. (4)) for n = 1. The amplitudes for Tc will be frozen a~ their 
core values. One proceeds to the two-valence problem next, and introduce 
operators S (z) = T ~  ) + X (2) with two-valence destruction operators. In the determi- 
nation of  S (z) ampl i tude  S (1) amplitude are kept frozen. Thus, generally, we may 
write 

S ( ' )=  S ( " - I ) + S ( ' )  (6a) 
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with 

S (') = T~ ") + X (") (6b) 

where S (') is the new cluster operator at the n-valence level. SEC thus generates 
a unique W needed for constructing a unique effective Hamiltonian but generates 
it hierarchically by essentially a decoupling procedure for the various n-valence 
sectors. 

We have still not indicated how the factorization leading to a connected series 
is obtained, nor have we discussed how the variational equations determining 
the T~ amplitudes are obtained. These aspects we discuss in Sects. 2.2 and 2.3. 

2.2. The S E C  and the norm-cancellation 

For an n-valence problem, we assume that there are starting (reference) functions 
�9 ~ ' )  which get converted into exact functions ~]~) by the action of W. Using 
Eq. (3), we have 

K = 1 , . . . ,  N ~  ) (6) 

where N ~  ) is the dimension of the n-valence model space. Clearly, the functions 
W~") can be expressed as linear combination of the n-valence model space 
determinants ~ " ) :  

xI'~") = E ~ AK'~ ,~(") (7) 
A 

with r,(-) �9 ~AK as expansion coefficients. We leave the specification of C(A~'S for the 
present. Each ~(A ") is obtained by the action of a product of n appropriate "valence 
creation" operators on the core function ~c: 

= (8 )  

with ~(A ")* signifying the product of n-valence creation operators. 

The energy functional E ~  ) may be written as 

>) N~). (~2~)1+~)) , r = l , . . . ,  (9) 

Substituting Eq. (6) in Eq. (9), and using Eqs. (2) and (7), we have 

~- ((i)(A-)lN[exp (~( ,)+)]HN[exp/Z(-hl la,(-) \r , (+) r ( - )  \~.~ ] j I " . ~ B  / I . . . A K , , . . , B K  

E ~ ) -  A'" (lO) 

E (r (S(")*)]N[exp r+(,)xllm(,)xr~(-) r~(-) \ J.J ].ll'-Zr B / ' r  A K  ~,-] B K  
A,B 

Our motivation is to get rid of the denominator in Eq. (10) leading to a connected 
series. 

Using the core-function (Pc as the vacuum, we can analyse the structure of the 
denominator in Eq. (10), as a sum over various contracted operators using 
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General ized Wick's  Theorem (GWT).  Clearly, only those terms in the expansion 
will survive which have only valence operators  left uncontracted,  leading to model  
space to model  space transitions. 

All such terms may  be depicted as open diagrams having open  lines labelled by 
valence indices only. A typical term will contain products  o f  several composi te  
operators  in normal  order. Each composi te  opera tor  will involve contract ions 
among  various cluster operators.  Figs. 1 depict  typical box structures o f  the 
denomina to r  for one and two valence situations, where we have fol lowed the 
usual double-ar row representat ion for the valence lines. Also we shall use the 
single-arrow representat ion for the internal lines in the diagrams to follow. Each  
box contains connected  terms obtained by contract ing T~, To + and X § operators 
with To, Tv and X operators  which have shapes like valence to valence "scatter- 
ing". The normal  ordering ansatz, Eq. (2b) ensures that  the contract ions within 
the ~(,,)t operators  S ( " )  or  the operators are absent. It follows that  in a box having 
n-valence lines, each opera tor  T~ or X can have at most  n valence destruction 
operators  and similarly each operator  T~ + or  X § can have at most  n valence 
creat ion operators.  Figs. 2 illustrate this diagrammatical ly,  taking ~ypical examples 
leading to one and two valence boxes. We have fol lowed the Hugenhol tz  conven-  
t ion o f  representing the antisymmetrized matrix-elements by vertices. 

We shall now see that  SEC allows us to cancel the denomina to r  in a unique 
manner  for  any n-valence problem. We start f rom the zero valence problem. The 
boxes would  then be all closed diagrams (corresponding to n = 0 valence problem) 
and because  o f  the normal  ordering in the wave-operator ,  would  contain only 
T~ + and Tc operators ;  any T~, T~ +, X and X § opera tor  would  have left at least 
one valence opera tor  uncontracted.  The set o f  all such boxes clearly constitutes 

<< >> 0 >> << 0 << 

> > 0 > >  
a b c d 

Figs. 1 Typical diagrammatic structures of the denominator of Eq. (10) for one and two valence 
problems. Each circle indicates a series of connected terms having the orientation of valence lines 
as shown. (a) and (b) depict one-particle and one-hole situations. (c) and (d) are the corresponding 
sets for two-valence (hole-particle) situation. Fig. (d) is disconnected 

Figs. 2 Some typical diagrams con- 
tributing to the circles of Figs 1. Figs. 
(a), (b) and (d) contribute to Fig. l(b), 
while (c) contributes to Fig. l(c). The 
vertices with filled circles denote T~ or 
Tc operators, as the cases may be, and 
those with filled squares depict the T*~ 
or T*~ operators, I~ corresponds to an 
X vertex, and -q corresponds to an X t 
vertex 

/ f  / f  

a b 

c d 
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the norm of the core function xc = exp (To) qb quite analogous to the closed-shell 
theory [19, 21], because the norm consists of  all the closed boxes obtained by 
contracting T~ + and T~ operators in all possible manner.  Let us write the norm 
(qbclexp (T~) exp (T~)lqbc) as Net. 

Now, for a one-valence problem, the nonvanishing diagrams will have either 
closed boxes or at most one box having one valence line with the rest having 
closed boxes. The overall contribution D1 from all the diagrams to the 
denominator  of  a one-valence problem then factorizes as follows: 

D~ - ~'r(l) N.T - , ,  op ~ , c ,  (11) 
where N(o 1) contains the total contribution from all the boxes having open valence 
lines only. The lines on the right and left of  all the boxes will be labelled by 
valence indices. Thus, for example, the lines on Fig. 1 (a) will have particle-valence 
labels; those on Fig. l(b) will have hole-valence labels, and so on. Noting that 
there can be at most one X (1) and /o r  X +(1) operator  in the box, we may invoke 
a condition that each (a, b) element of  all the terms coming from all the one 

~T(1~ be written as valence boxes cancel among each other. Thus, if iv o~ 

.~/(1) (1) + 
ov = Y~ ( M o p ) b a N [ a b a a ]  (12) 

b,a 

we demand that 

(A,t(l)a --0 for all valence labels b, a. (13) I ra  o12 }ba  

The total number  of  such equations equals the number  of  X or X + operators. 
Eqs. (11) and (12) imply that for a one-valence problem, the denominator  in Eq. 
(10) can be written as 

/-~(1) t '~ (1)  / r ~ ( l ) l m ( l ) \  Nd ~ - ' ~  / '~(1) /-~(1) NY (14) ( ~ ' ) [ D I I ~  1)) = ~ ", . .~AK~,..~BK\"~A ['~w B / "  /% "~, .~AK'~'AK.~'c l  
A , B  A 

for the one valence problem. Choosing the coefficient matrix C <1) as orthonormal,  
we have 

( ~ l ) l o l l q ' ~ ' ~ )  = N c l .  (15) 

For the two-valence problem, likewise, the overall nonvanishing operator DE for 
the denominator  may be written as 

D2 = N(o2) Nr (16) 

�9 , (2) where~,~ op consists of  one box with two valence lines and two boxes having one 
valence line each. A typical situation is depicted in Figs. l(c) and l(d).  l(c) is 
a two-valence box, and l(d) is a product  of  two boxes. The one-valence boxes 
have the matrix-elements a ,~(~) since no T~ ~, T +(2), X (2~ or X +(2~ can contribute *'* op 

to a one-valence box, and contribution of  all such one-valence boxes is zero from 
M(2)) Eq. (13). The contribution of the matrix-element of  the form ( op. in two-valence 

box will come from diagrams having at most one T ( ~ ) / X  (2) and /o r  one T+~(2)/X +(2) 
operator. Again we choose the matrix-elements of  the operators X (2) or X +(2) in 
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such a way that 

( ~Ar(2}~ = 0 (17) lvJt op ] ab, cd 

for all choices of the outgoing and incoming valence labels (a, b) and (c, d). The 
denominator of Eq. (10) for the two-valence problem is then 

(a'!)'~2)[D2lXI/'~2)) = E I-~ AK"~(2) C(~) Nd  = Ne t (18) 
A 

for orthonormal choice of C (2}. Proceeding hierarchically in the manner, we thus 
find quite generally that for any n-valence problem, we have 

(M(o~})al... a,, b l . . .  b, = 0 (19) 

and 

( , ~ " ~ I D . I ~  ">) = No,. (20) 

Let us note that the constraints like (19) imposed on matrix-elements of the 
operators X ("} ensure that the denominator for any state K of any n-valence 
manifold has the value Nc~. This Choice thus reduces the denominator simply to 
the norm N d  for each function ~ " }  for all K and (n). 

Let us now consider the numerator of the energy functional, Eq. (10), Using 
GWT, we may again expand the product operators N[exp (S("}*)]HN[exp (S("))] 
in normal order containing contractions among various operators, excluding 
again contractions within operators in each group of S ("}* and S ("} operators. 
Clearly, a typical term in one such contracted component obtained from the 
expansion using GWT will have a set of operators contracted together containing 
the Hamiltonian and the rest having contractions containing S ("}* and S ("} 
operators. A typical term may then be depicted schematically as in Fig. 3 having 
one square-box with open valence lines and containing the Hamiltonian vertex 
and a sequence of circled boxes just as generated in the denominators. Because 
of the constraints (19) the overall contribution of the nonvanishing terms of the 
operators contained in the numerator of  Eq. (10) will come from all the square 
boxes containing at most n open lines for an n-valence problem apart from a 
factor Nd. Some typical diagrams contributing to the square box are depicted in 

• o 1 

Fig. 3 A typical diagrammatic structure of the numerator of Eq. (10). The square box depicts the set 
of connected diagrams containing the Hamiltonian vertex. The rest are circled boxes having the same 
structure as in Figs 1. The circle with no external line depicts Ncl 
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~ > >  

d a 

tg r 

f 

Figs. 4 Some typical diagrams contributing to the square box of Fig. 3 for one valence hole situation. 
The unfilled circles with two/four lines denote the one/two body operator of H 

Fig. 4. The numerator  N '  may thus be written as 

N ' =  (xI,~"]N[exp (S(")*)H exp . . . . .  N c ,  (21) 

which clearly shows that N '  factors out into a size-consistent connected term 
containing the Hamiltonian times the denominator N~t. The energy functional 
for E ~  ) finally takes the form 

E ~  ) = (xtr~")lN[exp (S(")*)H exp ")) . . . .  �9 (22) 

Eq. (22) contains linked terms only and is thus size consistent. Calling the operator 
in N[  ] . . . .  in Eq. (22) as an operator/-),  we may write Eq. (22) after expanding 
in terms of qbCm~)'S using Eq. (8) as, 

~- ~ , .~AK, , . .~BK\ . .X . .A  I 1 1 1 " ~ B  / 

A,~ (23) 
= ~ ~ ( . )  r ( n )  r.~ 

",J A K  ~.~ B K  ~ t I A B  
A S  

/4 may thus be viewed as an effective Hamiltonian acting on the model space 
functions only but generating the exact energies E ~  ). From Eq. (22) it follows 
in a straightforward manner, that S{")* operators appear symmetrically with S~) 
in/-), and thus/ - )  is by construction automatically hermitian. For any truncated 
expansion also, /-) remains hermitian if all the terms containing S(n }* and ~{n} 
are kept to the same power in the expansion. Clearly a variation of E~}'s with 
respect to the C{A"~'S would lead to an eigenvalue equation with C~  ) as an 
eigen-vector. It is therefore consistent to choose C{"}'s as orthonormal, as was 
indeed assumed by us. 

We now observe that, as a consequence of  the SEC (and, as a special case thereof, 
the core-valence separation) appropriate difference energies emerge as size- 
consistent expressions. If  by Ec we denote the correlated core energy, correspond- 
ing to the function Xc = e L S e ,  then the difference energies AE~ ) defined as 
( E ~ ) -  E~), can be obtained simply by dropping the completely closed diagrams 
obtained from N[  ] . . . .  or equivalently from the operator/-), from the expression 
for E ~  ). This is because, Ec consists of all the closed diagrams obtained by 
connecting powers of  T~ + and Tc with an H vertex from left and right of H 
respectively. In/-), the closed diagrams cannot come from terms containing even 
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T~ / T~ ~,~ X(")/  X +(~) operator. Hence, if a single + ( " )  (~)^- 

/'~ ----/-tcl -1-/-Iop 
= Ec + IZIop, (24) 

where /~op consists of open diagrams only, we have 

(25) 

For a one-valence problem, AE~ ~ for (Nq: l) electron problem, with qb~ as the 
ground N-electron Hartree-Fock function, will yield IP's and EA's. This case 
will be further illustrated in Sect. 3 as a concrete application. 

2.3. Euler variational equations from the energy functional 

If  we now postulate an Euler variational principle for the energy functional E ~  ), 
then the equations obtained by varying E ~  ) with respect to the S("~ cluster 
amplitudes will contain the coefficients "-'AKr(") in them. We now want to be able to 
decouple the variational equations for S(~) from those for the coefficients C ("~. In 
that case there will be a single set of variational equations for S("~ independent 
of K. The variational equations for C~An~'S will provide us next with the E~) 's  
and all the N ~  ~ energies E~)'s  will be generated from a single diagonalization. 
This will also enable us to guarantee both the orthogonality and the noninteracting 
nature of the functions ~p~n~ even in a truncated calculation: 

( ~ " ~ 1 ~ " ~ )  = 6nL. (26) 

(~lJ'~n)l/-tl~2'~ = E(~)t~KL . (27) 

In the complete cluster expansion of the functions ~ )  we have two different 
sets of parameters: (a) a set of linear parameters Cr  and (b) a set of non-linear 
parameters - the cluster amplitudes of S("). If we look upon the functions X~A ") 
= N[exp (4("))] q~A")'S as correlated basis-functions whose linear combinations 
furnish the exact function, then a sensible way to optimize the parameters suitable 
for generating energies of a manifold is a two-step procedure. We minimize the 
expectation values 

with respect to the cluster amplitudes. Keeping the cluster amplitudes fixed, we 
next optimize the energy expressions with respect to the linear expansion 
coefficients to get the respective energies for the manifold. This recipe, for 
example, has recently been advocated in a different context by Hendecovic [37]. 

For the variation of the nonlinear parameters, we again invoke SEC. We start 
from the zero-valence core problem, and get the cluster-amplitudes tc by solving 
the Euler equation for the closed-shell problem: 

0/-It/ 
- 0  for all i (28) 
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as described in our closed-shell development [19]. For one-valence problems the 
t~-amplitudes are kept fixed and the amplitudes s~ ~) of the operator S~) are to 
be treated as variables. We take each qb ~) in turn, and calculate the size-consistent 
expression ~,D~)'AA. 

/.~(1) <x )lHIx )> __ <a, >l qla, T>" (29) A A - -  

One may guess that the cluster-amplitudes sl 1~ may be found by directly solving 
the equations 

0sll), - 0  for all A and i. (30) 

This would have been true provided all s;'s are independent, but they are not. 
The X ( ~ ) and T~ 1 ) operators are related through the constraints, Eq. (13). However, 
as we show later by using Lagrange's method of undermined multipliers, we can 
bypass this problem. 

The two-valence problem comes next, and we build up successively in a similar 
fashion reaching finally the n-valence level. The general system of equations for 
the S~ m) amplitudes would be the constrained variation equations of all the/-t(A'~'S 
with respect to the m-valence cluster amplitudes. 

We now derive the Euler-Lagrange constrained variational equations for deter- 
mining the sl ") amplitudes. We designate the T(o ") cluster amplitudes as t(fl ) and 
the X (") as x~ "). The index I for an n-valence problem runs over the pair of 
labels (A, B) with each A and B built as an ordered set of n-valence labels 
specifying qb~") and (P(B "~. The constraint equations (19) may thus be compactly 
written as 

(M(op))AB -= 0 for all A, B. (31) 

The variational equations for the amplitudes may thus be written as 

0/-ICA'A) - ~ AAo ~(M(~ - 0, (32) 
Ot(', )t CD t9 t (r~)t 

c3 r_~r(n) (n) 
~t'tAA l a  o (M ~o p) )C D  

ox~.~, 2 "~CD ~;C~, --0. (33) 
C,D V'A l 

Variation with respect to t~, and xl amplitudes furnishes the conjugate Eqs. of 
(32) and (33). 

For real amplitudes, the conjugate equations may be dropped, the t(~,~ )~ and x~ "~* 
amplitudes equated to the corresponding t ~") and x~ ") amplitudes, and Eqs. (31) vi 
to (33) determine t(") x~ ") and the Lagranges' multipliers completely. Owing to 
the normal ordering in the cluster operator, there can at most be one t~"~/x ~) 
and/or  t~")t/x (")* amplitude in any 11T"~(n)AA o r  (M(p))A B. There can thus be at the 
most a quadratic term containing s~ "~ amplitudes in the functional to be differenti- 
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Figs. 5 A typical shape of a T~ vertex with n 
valence holes on the left and outgoing (n + m) 
p -h  lines on the right is shown in Fig. 5(a). 
Fig. 5(b) shows a concrete case for a one- 
valence-hole situation. A typical shape of 
X (')* vertex is shown in Fig. 5(c). A concrete 
case for a one valence hole situation is depic- 
ted in Fig. 5(d) 
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ated. There are further  simplifications in the Eqs. (32) and (33) which can best 
be described using a diagrammatic  analysis. 

Let us assume that  a typical T(~7 )t opera tor  has the shape as shown in Fig. 5(a). 
Its valence lines on the left are labelled by an ordered set o f  n-valence indices, 
which we designate as A. Its lines on the right are naturally not  all valence, which 
are collectively labelled as ~-,,. Clearly, all choices o f  the pair  (zr,,, A) generate 
all the t(fl )t matrix-elements.  As a concrete example consider  the one valence-hole 
problem. The typical  vertex is shown in Fig. 5(b). There is only one valence index 
in the n-ordered valence set (as n is one),  and A thus can take on the values 
a - t h e  hole labels. The set Zrr, will consist o f  all the ordered triples (p, y, 6) that  
can be formed by taking two hole labels and one particle label f rom among  the 
hole and particle indices respectively. All such possible choices o f  q'/'m and A will 
exhaust  all distinct t(v 1)t matrix-elements. In  a similar vein, a typical X~ ")* is 
shown in Fig. 5(c), where the pair  (A, B) defines the l abe l / .  A concrete example 
for the one valence-hole case is depicted in Fig. 5(d). The variat ional  equations 
are obta ined if we delete the t'v, or X*~ vertices f rom the square boxes. Thus, 
typically with the diagrams as shown in Figs. 4(a) to 4(d) as componen ts  o f  a 

- 0)1  box of  Fig. l(b),  the variat ional  expression OH~/Ot~, in Eq. (32) for t t~, as 
(3'61 t~ ~)7 c~p> ~ (for the choice 7r,, = (py6) ,  A = a)  may be diagrammatical ly  shown 
as in Fig. 6(a). The variat ional  expression for OffI~,/Ox(1 l~* in Eq. (33) for 
x(, ~ = <~lx(,l~*l~> for  diagrams 4(e) and 4(f) contr ibuting to the box Fig. l (b)  will 
likewise look  like Fig. 4(b). In the genera l  case, for a variat ional  expression 
OISIAA/Ot (n)t the diagrams generated will be labelled by the set w,, for  the open  

>> + / >  "r ~ )  + ) >  
7 7 

Fig. 6 (a) The diagrams generated by 
differentiating the terms representing 
the diagrams of Figs. 4(a) to 4(d) with a 
respect to <y~[t~l)t[ap)~ amplitude. 
(b): The diagrams generated by differ- 
entiating the terms representing the y et 
diagrams of Figs. 4(e) and 4(f) w i th  - )~o) )  
respect to <~lx<'~%> amplitude b 

-h~ p 6 
+ ~ ~ > ~ - - - ~  

- 

y 7 tr 
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lines on the left and by the set A for the open lines on the right for the choice 
(Trm, A) of  the labels of  t(') matrix-elements. Similarly, for the expression 
OI=IAA/OX~ '~ with I as (A, C) the open lines on the left of  the diagrams will be 
labelled by C and those on the right by A. 

Let us now note carefully, that in the expressions 

Ot(,~), or OX~.), 

the label C must match label A of the set i = (Irm, A) and also of the set I = (A, B) 
as otherwise r ~(-)~ will not contain the specific t r or X~ ")* at all, and the k 1~'1 op  ] C D  -v~ 

derivative will be trivially zero. In other words, the double sum over C and D 
in Eqs. (32) and (33) really reduces to a single sum over D only. The Lagrange's 
multipliers A An become simply h ~D = hAD. We again illustrate this feature more 
concretely by taking the one valence-hole problem. The expression 
O[ IA(1)~ /..,q~.(I)'t is non zero only when 8 = a for i = (p, 3/, 8, a)  and I 1 V l  op  ] S l ~ [ U ~ t ~ i  

O[  AAr(I)~ / ~ ( 1 ) r  ~,-~ op J~,/~,-~i is non zero only when 8 = a and I = (a, 8). Thus the associated 
Lagrange's multiplier may be denoted by A.~,. 

Let us also note that, since [-IAA and (M(o'p))cD etc are at most quadratic in ~ ' )  
amplitudes, the variational equations are linear in ~ ' ) .  

Having found the amplitudes t(~, ") and x(~ ~), we may substitute their values in/4A/~ 
to generate the expression for E ~  ). A variation of E ~  ) with respect to the C(A~'S 
then leads to 

y~ r-~(-),~(-) =( , )~( - )  (34) ~Jt AB~..~ B K  = .L, K ~t.,~AK , 
B 

which is the model space eigenvalue equation furnishing the E~)'s .  Due to the 
decoupling of  the Eqs. (32) and (33) from the C ~ ' s ,  the matrix-element n a n  
is independent of the states K, so that all the E~) ' s  are obtained from a single 
diagonalization procedure. This also guarantees the orthogonality and noninter- 
acting nature of ~ ) ' s  (Eqs. (26) and (27)). 

We conclude this section by summarizing the various steps of  the solution of 
Eqs. (31) to (33) for an n-valence problem: The matrix-elements of T~ are solved 
first, corresponding to the zero valence problem. With the t~ amplitudes frozen, 
Eqs. (31), (32) and (33) are solved for the one valence problem next, to get .t (1)o, 
and X~ l) amplitudes. These and t~ amplitudes are frozen at the two-valence 
problem and only the new variables in ,~(2), i.e..~,t (2) and x~ 2) are varied next to 
get these amplitudes. This process should ideally continue hierarchically up to 
the n-valence level. If  n is too large, we may stop at an appropriate rn < n valence 
level, and assume that glP)'s with p > rn are all zero. This truncation may be 
termed as an "m valence subsystem approximation" [40]. 

3. Calculation of IP and EA: An illustrative example of one-valence problems 

In this section we shall work out the actual expressions for t~- IAB etc  by taking 
IP and EA as typical one-valence problems. ~ c  is chosen as the N-electron 
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Hart ree-Fock function d~o and the one valence model space functions are the 
( N  + 1) electron determinants a ~ o  and @-~o for all holes a and particles p. IP 
and EA are obtained by dropping the dosed  diagrams of  H, i.e. working with 
~(1) only. o p  

The zero-valence ground state To-values are calculated as in the variational 
closed-shell coupled cluster theory [19] and kept frozen at the appropriately 
calculated values. Only the two-body T~ operator is retained for our purpose. 
We confine the rank of T~ 1) operators to two-body only. Specifically, for IP 
calculation, T (t) is given by 

T(~ 1 ) = 1  E (aPlt(~l)13"8)~N[a]a;a~a~]. (35) 
2! ~w~ 

When 3' = 6, this is a pseudo one-body excitation with only one change in occupancy 
viz. 8 ~ p. Thus effectively this approximation involves one and two body cluster 
terms. This choice, Eq. (35) also ensures that we have taken all the distinct 
amplitudes that we can have to generate all the single shakeup states of the 
manifold free of unnecessary constraints [9, 40]. a in Eq. (35) is, by construction, 
a valence hole. We elaborate only on the IP's, because the EA diagrams may be 
generated from the IP diagrams by hole-particle reversal. T(mand X (1)~" operators 
in this case have already been depicted in  Figs. 5(b) and 5(d) respectively. For 
generating the variational equations, the labels A, B may be given the hole indices 
a , / 3 , . . . ,  etc. and ~r,,, indices (p, 3', ~) for IP. The variational equations may then 
be diagrammatically represented as in Fig. 7. 

To arrive at the final working equations, we have used reduced Hugenholtz matrix 
elements of  T(J ) and spin adapted the expressions in a manner analogous to our 
closed shell work [19]. The graphical methods of spin algebra [22] are used for 
this purpose. The reduced Hugenholtz matrix elements of To are given by 

{apltL~)13'6}~ = (~plt~)13'6)+(-1)~(ap[tL1)163') with tr = o, 1. (36) 

(aplt(~)[3"~) are Goldstone matrix elements, and a, p, y, 6 etc. are now orbitals. 
The functions alPhA") etc for the spin-adapted theory should also be taken as 
spin-adapted combination of determinants. In the Appendix we have collected 
the expressions for /-t~. From these expressions, the variational equations for 
IP may be set up in a straightforward manner. Hole-particle reversal generates 
the corresponding EA equations. For excitation energy (EE) calculations, which 
is a two-valence problem, the model space may be taken as hole-particle excited 
determinants ap a~ ~o. However, the one-valence level has to be solved first. EE 

Figs. 7 The diagrammatic representation of 
thevariationalEqs.(32) and(33) forthelP ~ ot ~ _  
problem, corresponding to the one valence t~ >> - -  ~-- ~,,/~ t~ = �9 
hole situation. 7(a) corresponds to Eq. (32) 7 /t 
and 7(b) corresponds to Eq. (33). The boxes a 
[] and D indicate connected diagrams from Y ot 
~D(.)z~(.)t ~t~,f(.~ /~ (")* respee- >>IS]>> __ )- )1,/~ >> D>> # uaa A B i t ~ o i  and u \ x v a  op ] A B I t P S i  

tively b ,a 7 
= � 9  
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calculations would thus automatically generate as a by-product the IP and EA 
values as well. 

4. Critical discussions 

First, we shall try to indicate a relation between the formalism developed above 
with the relevant open-shell perturbation theories [23-33]. We shall illustrate our 
points by taking as an example the one-valence problem. 

For a perturbative analysis of  the resulting system-of equations, we have to rewrite 
the linear equations in S (1) amplitudes depicted in  Fig. 7 in a form suitable for 
iterative solution. If  we write the equations in the matrix form 

( A - k ) t ~ + B X +  Y = O ,  (37a) 

Ctv + ( D - ~ ) X  + Z = O  (37b) 

corresponding to Figs. 7(a) and 7(b) respectively, then a perturbative series for 
tv (and x) may be obtained by an iterative procedure where one rewrites Eqns. 
(37) as 

(Ad _ ka) t~+l = _ y _  B x  j _ (A~ _ koa) t~ (38a) 

( D d - -  ~ k d ) x  j + l  ~- - -  Z -  C ~  j - ( D ~ - -  ~ k ~  (38b) 

where C d and D d contains only the one body matrix-elements of H (the 
Har t ree-Fock matrix elements Ep(~pq o r  ect~afl etc.) and C ~ and D ~ a r e  the 
remaining components of  C and D. A is the Lagrange's multiplier matrix, whose 
diagonal and nondiagonal components are also likewise partitioned, tv and X 
are the matrix-elements of  t~l, ) and X l 1) stored in a column. The superscripts (j + 1) 
etc indicate the matrix-elements at the (j + 1) step of iteration. We also have the 
norm preservation conditions 

( AAr(1)~ ~--" 0. (39) 1,~ op ]a~ 

From Eq. (39), it follows that to the lowest order, we have t~ = x = 0. From Eq. 
(39b) we find 

(e~ - A~)(1 - x~ = (ca - A~) = 0, (40) 

where the diagram coming from D d and A d a r e  merely orbital energies and A~ 
respectively. 

Substituting the value of A~ from Eq. (40) to Eq. (38a) we find that at the lowest 
order 

{cep[v]y6}~ (41) 

The pertinent point of this analysis is that in the expression for {ap[t~)ly6}~,  the 
orbital energy of the valence label a appears in the denominator, and this structure 
is preserved at the higher order iterations. Thus in the expression o f / 4 ~ ,  a typical 
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term [ VT(~ 1)] . . . .  will be of the form 

(2~r+ 1){~l ~I/3pL{~pl ~I~L 
E 

" r@o  ( e~, 4 -  e ~  - -  e p  - -  e,~ ) 

without any reference to the orbital energy er in the denominator. Thus the expression 
is unsymmetrical in the labels a and /3. However there will be a counterterm 
[T(~ 1)*V] . . . .  which will be hermitian adjoint of the term considered above, and 
the two together will give an expression which is manifestly symmetric in the 
labels a and /3. The lack of symmetry between a and /3 in individual term of 
/~r and retention of symmetry in the complete expression of the/~r is reminis- 
cent of the hermitization of the nonhermitian formulation of the open shell 
perturbation theory of Brandow [29], where the effective Hamiltonian is explicitly 
hermitized after the wave-function is generated by adding counterterms. Brandow 
calls this hermitized procedure a theta-expansion [29]. 

An interesting sidelight to the method developed here is the following: If  we 
adopt an alternative approach to the variation problem by assuming X as a 
hermitian operator, then we can equate the X~- and Xs amplitudes. During the 
differentiation in Eq. (33) both X~ and XI amplitudes are then differentiated. 
In that case the variational equations that are generated are different from those 
considered until now, implying consequent changes in the actual values of/-IAB 
matrix elements as well. In thls alternative procedure, we may eliminate the 
Lagrange's multipliers in favor of T~/T+~ only, and differentiate the fi(")'o 1 1  A B  ~ with 
respect to t(~7 )* amplitudes. As an example, for the IP problem, we have, up to 
quadratic terms: 

( A/It(|)1 - -  --( i  >t . .u~ ( l ) .  I- T~-(-i]~T(I )] _l_ [ r c ~ c ] c < r  

(42) 
- -  " - . " a f l  - -  L-* v ~ v  Jar 

where [ ~ ( 1 ) ]  etc. are the contractions between T~ and T~ operators having 
open lines labelled (a,/3).  From Eq. (31) we have 

~(~) _!srT'-Ti~TT(lh - r ~  1 t (43) -~cr = 2 t L ~ v  "~ v J a l 3 - - L 1  c'~ cJot l3J  

(l) into to the pertinent order of approximations. Substituting this expression of x~r 
H~r and truncating the expression o f / ~  up to a total of quadratic power T(J ) 
we obtain 

/-]~ = [Hc]~ + [ ~ ] ~ ,  + [H~(v')]~ 

! r ~ ( l ) l  - �89 T ~ < ] < ~ #  
- - 2 L ~ c ~ v  ~ v  Jcs 

- �89 T~]<~n. (44) 

where 

Hc = [e<*H e L] . . . . .  (45) 
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The variational equation with respect to t~l )t amplitudes would generate a set of 
simultaneous linear equations in to amplitudes. To the first order of  V, this will 
give 

{aplt(~l)[yS}~ - {aPlt(~)[YS}~ 
e~ + e. - ep -�89 + e~)" (46) 

This expression contains the labels (a, fl) symmetrically in the denominator and 
is reminiscent of  the intrinsically hermitian open-shell perturbation theory of  
Banerjee et al. [28] following an earlier suggestion by Johnson and Baranger [27]. 
Let us note, however, that this prescription leads to a rather awkward situation 
in which differentiation with respect to a t~l )t amplitude leads to a disconnected 
diagram as depicted in Fig. 8(a) coming t'rom [ ~ ~ 1 ) ] ~  and the other 
connected as in Fig. 8(b) coming from [~-+o) ~r~l) j~/~]~0. The first diagram, the 
disconnected type, indicates that d u e  to the presence of  label /3, we need an 
"extra" label on the t~ amplitude to show that it depends explicitly on/3. This 
is the price we pay for the intrinsically hermitian theory we generate thereby. 

We now make a brief comparative study with the pertinent open-shell cluster 
expansion theories which also invoke variational principle. 

One such theory is due to Paldus et al. [17] for difference energy calculations, 
where the open shell wavefunction ~ )  is given by 

�9 ~ ) =  W~ ) exp (T~)qbo. (47) 

e L ~o is the exact ground state as in our work and W~ ) creates the ionized/excited 
state ~ )  by using a linear combination of  f~(A n)t of Eq. (9). Direct difference 
energy, in this work [17] is not a single size-consistent term but instead is a ratio 
of two connected terms. This is the crucial difference of Paldus formalism f r o m  
the work presented here. Besides this, the lack of  a cluster property of the operator 
W~ ) makes the form of  direct difference energy progressively unsuitable for 
higher valence situations. 

a 

= 2,> 
b 

Figs. 8 The diagrams generated from 
the variational expressions of an 
intrinsically hermitian formulation. 
Fig. 8(a) is obtained by differentiating 
a ~ m a t i c  expression of the form 
[He T~ L'' T~I)]~ with respect to the t*~ 
amplitude. This really appears when 
Eq. (43) is used to replace the x i ampli- 
tudes in [/~ci)] ,~ by T ~  terms. 
The variational expression of Fig. 8(a) 
is clearly disconnected. Fig. 8(b), on 
the other hand. comes from the vari- 
ation of [x~l~Hc]~t3 with the t*~ 
amplitude where again Eq. (43) is 
used. This expression is connected 
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The theory due to Nakatsuji [18] uses symmetry-adapted cluster expansion using 
CI type of  reference function (SAC-CI).  This ansatz has been applied both 
variationally and nonvariationally. In the variational type, the functional used 
by Nakatsuji retains both the numerator and the denominator and hence lacks 
size-consistency. Nakatsuji uses symmetry-adapted linked cluster operators while 
an appropriate projector is used to project the appropriate symmetry components 
from the unlinked terms. Our work differs from the work in [18] additionally in 
the treatment of spin-variables. 

Reitz and Kutzelnigg [13] used a common unitary ansatz for the cluster operator 
both for a parent closed shell and the appropriate open-shell states and calculated 
the difference energies directly via a variational principle. The unitary ansatz 
ensures that the denominator is identically equal to unity. The choice of the 
cluster operator W is according to the suggestion of Primas [38]: 

W = exp (o-) (48) 

with 

o'* = - cr (49a) 

and 

PoP = O. (49b) 

Eqs. (48) and (49) ensure that the expectation value of energy can be expressed 
as a Hausdorff expansion, and as Primas has shown earlier [38] this guarantees 
the size-consistency of energy. In later publications, Kutzelnigg [36] analysed the 
size-consistency problem for such a cluster ansatz in great detail and pointed out 
the need to consider all the n-valence sectors of the Hilbert space to guarantee 
size-consistency. Our work shares with Kutzelnigg's work [36] this aspect of the 
problem. It, however, differs essentially from [36] in choosing the form for the 
wave-operator. Essentially to guarantee hermiticity of the effective Hamiltonian, 
we need the property of  norm preservation only within the model space. This 
also serves to cancel the denominator. This is the constraint we have adopted. 
The unitarity on the other hand automatically demands the norm preservation 
outside the model space as well. This forces the unitary operator to have the 
exponential form of  Eq. (48) which is not in normal order. This form thus has 
a less compact structure, bringing in contractions among the various operators 
in the multicommutator expansion. Our choice of the nonunitary cluster ansatz 
with auxiliary operators forcing the norm preservation within the model space 
only is less restrictive and it is also possible to retain the more compact normal 
ordered structure for the ansatz as well. The proof  of size-consistency is nontrivial, 
however, due to lack of  a multicommutator expansion. This thus had to be proved, 
as was done in section 2. We should mention here that Kvasnicka [15], in an 
analysis of the open shell perturbation theory noted that a brute-force hermitiz- 
ation of  the effective Hamiltonian introduces errors only in fourth order, and 
these can be rectified by introducing suitable hermitian operators which he could 
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determine self-consistently. The ansatz chosen by us is similar in spirit to 
Kvasnicka's work [15], but we neither need any explicit hermitization of the 
effective Hamiltonian nor do we require Bloch Eq. [34] or recursive self-consistent 
solution for our development. Let us also mention that Soliverez [15] also used 
analogous ideas in his development of  perturbation theory. 
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covered in the paper. D.M. acknowledges financial support from INSA and DST (New Delhi). 

Appendix 

The expression for H ~  for one-valence IP problems is given below. Greek letters correspond to hole 
orbitals. The expression is written in terms of spin reduced Hugenholtz matrix elements given by Eq. 
(36) 

~,  \ J a ' y ~ T ~  JTl3~aTJ ~7[~Jr"g~a~ 

-�89 Z {~qlt())ly,~},,{c~plt(~l)lya}Jqp(2~r + 1) 
o~q"/6 

+ E {~pltg'lyoL{,~pltL'laoLf~,(2o'+ 1) 
o'p3,~O 

+�89 E ll3p t~ + l) 
~p'ySO 

+�89 E {aplt(~l)ly~}~{Ya[elOP}~(x(~l)o-8~o)(2cr + l) 
o'p3,80 

_!  

- E  {r % �89 ~ 
~1 ~2o-3 
pqy~30 �89 0" 3 

x (20-, + 1)(2o-2+ 1)(2o"3+ 1) 

Figs. 9 Some representative skeleton 
diagrams contributing to f and 13 
appearing in Eq. (A-1.). The actual 
diagrams may be obtained from the 
skeletons by assigning suitable arrow 
directions to the lines 
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where ~rl, tr2, tra are coupled spins and 

�89 �89 (A-l) 

or3 �89 

is a 9-j symbol, f and ~ are one and two-body operators of the composite N[e T*~ H eL] . . . .  . Some 
representative diagrams of f and ~5 are represented skeletally in Fig. 9. 
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